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ABSTRACT

Maximum likelihood methods are applied to a series of monopulse

problems, involving both angle estimation and signal detection. Only the

two-beam, off-boresight monopulse problem is studied. Explicit maximum

likelihood estimators are obtained in Part I, and their probability

distributions will be discussed in the forthcoming Part II. Both

deterministic and stochastic signal models are used here, and aximm

likelihood estimates are obtained for the single pulse case and for different

models of the multiple pulse problem. Particular emphasis is given to the
.4 problem of angle estimation in correlated noise, representing the case of

arbitrary interference.
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PART 1: STRUCTURE OF THE KSTIATORS

1 • INTRODUCTION

ILI In classical monopulse, a receiver has two matched channels, each

connected to its own antenna. The antennas have different patterns, or

different phase centers, and signals of known waveforn arrive from an unknown

direction which is to be measured by the receiver system. This entire study

is directed at the rather special case in which the signal direction is

characterized by a single unknown parameter, such as azimuth or elevation.

This restricted problem is interesting because of its long history and also

because it lends itself to a fairly complete mathematical analysis in an

interesting way.

The results developed here have practical application to direction

finding systems in which only one component of direction is unknown, and also

to the case where the antenna gains are assumed insensitive to the other

component, as with a radar using fan beams. In systems measuring both azimuth

and elevation, the techniques discussed here can be used separately on each

component, with somewhat suboptimum results.

The several estimation problems analysed here are modeled and solved in

rather general terms. However, the basic monopulse problems which motivated

the work are spelled out in enough detail to keep the results in direct touch

with practical applications. The method of maximum likelihood is ueed

throughout, and the focus is on fixed-sample angle estimation (i.e.,

off-bore-sight monopulse), and not on angle tracking, as such.

A mathematical setting has been developed for the special problem of

two-beam, one-parameter monopulse, which appears to be unique to this case.

Instead of dealing with beam gain ratios and complex data sample ratios as

points in a complex plane, this plane is stereographically mapped onto the

unit sphere. The likelihood function is directly related to distance on the

surface of this sphere, so that maximum likelihood estimates have very simple

interpretations as geometrical projections. Transformations of coordinates,

of which the well-known transformation of amplitude-comparison to

phase-comparison monopulse is an example, correspond to rigid rotations of the

; ':= ' ' " : : '.".." . ... " " """ "" " "" " '" " "1



sphere, and a slightly more general class of transformations allows for the

"whitening" of problems involving external interference of any kind.

The remaining sections of Part I deal first with the simple case of one

sample pair and white noise, where the spherical model is introduced and

3illustrated in terms of standard amplitude-comparison and phase-comparison
systems. Transformations are discussed next, and it is shown that the

amplitude-comparison and phase-comparison formulations are different versions

of the same general problem, viewed in special coordinate systems.

Generalizations are then introduced along two lines. In one line, multiple

sample-pairs are considered, with coherent and incoherent signal models. In

the other line, non-white noise is introduced, permitting the analysis of

[ direction-finding in the presence of interference. Finally, a

non-deterministic signal model is used to show that the same estimators for

direction of arrival are obtained as in the deterministic models of the

previous sections.

In Part II, to be published separately, the performance of the maximum

likelihood estimators is discussed. Explicit probability density functions

are given there for the single pulse case, for both internal and external

sources of noise. For the multiple pulse case, a recursive expression for the

probability density function is given, together with explicit formulas for

certain moments which can be used to characterize accuracy.

Many of the results in this report have been obtained by, or in

collaboration with, J. R. Johnson. His insight and encouragement has played

an essential role in the development of the ideas presented here.
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2. GENERAL FORMULATION OF THE CLASSICAL TWO-BEAM MONOPULSE PROBLEM

In a two-channel monopulse system we model the complex modulation

functions at the respective antenna terminals as Z1 (t) and Z2 (t), where

Zk(t) =_ Aei" S(t)Vk(y) + Wk(t)

for k - 1,2. The rf amplitude and phase are represented by A and 5, while

S(t) stands for the complex signal waveform, assumed known. Azimuth (or

elevation) is called y, and the Vk(y) are the complex voltage gains of the two

antennas in direction y. Finally, Wl(t) and W2(t) are totally independent,

complex circular white noise processes, each with zero mean and single-sided

power spectral density No . This last assumption results in the complex

covariance function

E Wk(t)Wk*(t') - 2No 6(t'-t)

for each noise process, and the circular property is represented by the

equation

E Wk(t)Wk(t') - 0

for k - I or 2.

These signals are passed through identical filters, matched to the

expected modulation, so that the complex outputs, sampled at the correct time

for maximum signal components, are

zk = G f S*(t)Zk(t)dt sk + nk

The real and imaginary parts of each complex sample represent in-phase and

quadrature components, and G is a gain factor. The separate signal and noise

terms are, of course,

sk  G Ae1i Vk(y) fIS(t)12 dt

a ,* d e * ,'- , - 0 -"1- ,"" -. ". - ", -.. " ....-......... "*........-*



and nk - G f S*(t)Wk(t)dt

and signal parameters have been suppressed in the notation.

The noise samples are complex, circular Gaussian variables, and we have

the expression

. EInk12  2G2 No f IS(t)12dt

for the variances (k-l,2).

We now choose the filter gain factor to make

2 fSt1 2!:~~ N o fst dt- 1 ,

,4

so that

2
EInkI - 2

Thus the real and imaginary parts of n and n constitute fout real Gaussian

variables, each with zero mean and unit variance. Next, we introduce the

normalized voltage gains

v k(Y) Vk()

12 + Iv2(Y)l

and write the signal components in the form

sk - bvk(y)

where b is our last new parameter, representing complex amplitude, and given

by

b G Asi VI( 2 I V 2(Y)1 fSt dt

4
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The argument of b is still the rf phase, and the magnitude is determined from

2 2 z 2 2
Ibi- . IV1Vv)I + IV2(y)l } fIS(t) l dt

as a result of our choice of G. But

I, A2IVk(Y)lZ fIs(t)I2dt

is the total signal energy in the kth channel at the antenna terminals, and if

the sum of these two energies is called Es, the total signal energy collected

by the system, then we have

2 2 sIbi -i NO

and the signal to noise ratio of the system may be defined as

2+ I812 b E
SIm - S.

- l + Eln 2l z 4 210

Everything that follows is based on the simple model

zk - bvk(Y) + nk

with normalized beam gains and univariate noise components, as defined above.

It should be clear that the special assumptions of Ideal matched filtering and

sampling can be relaxed, with only a change in the significance of b. In

Part I we are concerned only with the estimation of y, and b is a nuisance

parameter, but the connection with signal energy and noise spectral density is

important In Part II, where performance is evaluated and signal to noise ratio

Is a fundamental quantity. It is then important to relate b to physical

parameters by means of a specific model, as we have just illustrated above.
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Note that no assumptions have been made with respect to zhe voltage gains of

the antennnas, and that the basic model could apply to any problem

characterized by sample pairs with relative signal components fixed by i

single real parameter.

The probability density function for the two complex samples is

2
f(zslz 2 )- 1 L

44w

where

2 "2 2

L -Izi _ bvi(Y)I + 1z2 - bva(Y)l •

Haximum likelihood (ML) estimation of b and y Is, of course, equivalent to

finding the values which minimize L 2 . When we expand this expression, using

the normalization property of the vk, and complete the square we find

2 2 2 2L -Izil + 1z21 + lb - [vl*(Y)xl + v2*(Y)z 2 ]l

- Ivl*(Y)z + v2*(Y)z 2 l
2

The estimate of b, given y, is of course

SY) v:*(Y)sl + v2*(Y)z 2

- and y must minimize

2 2 2 * 2
MinL - Izil + 1Z2 1 - Ivl*(Y)zl + v2*(y)z2 l
b

after which £ - G (y)

Again we expand, and write

6



L2 2 2 Ivi(Y)2 Izil 2+Iv 2(y)12Iz21 + 2Relvl*(Y)v2(Y)zlz2*]
M.in L (1z I + Iz I )I-

b 1 2 il2  2

The quantity in curly brackets will determine the estimator of y, and it is

clear that this expression depends on the data samples only through the

complex ratio zl/Z2 . Recalling the normalization, it is also obvious that

this quantity depends on the gain factors through the ratio v /v2 only.

We express these ratios in terms of four, real angle variables, as follows:

v2(y)

iz
". Z!

- tan(n/2)ei*

The angles 6 and n are restricted to the range [O,w], so that f and 4 are the
arguments of the respective ratios. Angles 6 and f depend implicitly on y, of

course, and we may interpret 8 and n as polar angles, # and * as azimuthal

angles, describing points on the unit sphere. The data ratio is mapped into a

*, single point (n,*), but the gain ratio traces out some trajectory on the

sphere, as y varies over its normal range

The direction finding properties of the actual system are completely

specified by the "characteristic trajectory" over which (8,#) varies, and

there is no guarantee, in general, that this trajectory is a simple curve. It

tis also not guaranteed that any point on the trajectory corresponds to a

single value of y, but it is clear from the form of L2 that there will be no

way to resolve these ambiguities from the data samples, z1 and z2.

.- 7
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It is easy to show that

2 2 - - cos)
-Ivi(Y)I sin (0/2) 2 (1)

S2 2
1v2(y)2 - cos (0/2) - 1 (1 + cose), and that

vllr)v 2 *(r) - sin(0/2)cos(0/2)ei - sine i.

Similarly,

:':l [z i coon)

IzIl2 + 1z2 1 " (1 -cos )

i Z21 - + cosn) , and

IziI2 + 1z1 2  2 (

zlz 2* - I

ziI12 + i.12 2

When these expressions are substituted we obtain

Min 2 (IZ1I1z2l,' - cose cosn - sine sinn cos(# - *)j.

But

cos con + sine sinn cos(f - *) - cos

where A is the arc distance between (0,+) and (ii,*) on the surface of the

sphere. Finally,

8



I

M L2  (I:112 + 1Z212) sin2(A/2)I

and the estimation problem reduces to minimizing A, or finding that point on

the characteristic trajectory of the system which is closest (in the ordinary

metric sense on the sphere) to the data point (n,#)

If the characteristic trajectory is complicated, then the spherical

interpretation is of no particular help in finding an algorithm for explicit

minimization, but in some important idealizations, it permits a simple,

explicit answer to the estimation problem.

The equation

w - tan(O/2)ei+

establishes a mapping of the complex w-plane onto the unit sphere and vice

versa. It is, in fact, the well-known stereographic projection of the sphere

onto the plane. The plane may be taken as the extension of the sphere's

equatorial plane, with points geometrically projected between sphere and

plane along lines originating at the south pole. The mapping is conformal and

also maps circles into circles. We do not need any of these facts (although

they help the intuition), since it is more fundamental to this problem to

concentrate on the many-to-one mapping established between complex

two-component vectors, such as[:;]
and the corresponding points (n,#) on the sphere.

In addition to the estimation of signal parameters, it is often necessary

to decide on the presence or absence of any signal in the first place. The
"noise-alone" hypothesis, b-0, is characterized by the sample probability

density function

9
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~LO 2

f O(zlS 2 ) 1 p

where

L0 - 1Z112 + IZ21

Maximum-likelihood testing then reduces to evaluation of the test statistic
2 2

LO - Vi L2  If the ML estimate, y, corresponds to the minimum distance A

then

r:... 0~M L2  - 1 (1 2 +I12) - o ,
bin L (jZ1j2 + IZil )(1 COS

and detection is based on the test

I 2 2 + cos A) > threshold.

Examples of the ML estimation of y and the corresponding detection criteria

are given in the next two sections, beginning with the familiar examples of

phase-comparison and amplitude-comparison monopulse. I

Before leaving the topic of detection, it is interesting to consider

a refinement sometimes called interference detection, or "data editing".

Monopulse measurements are easily disturbed by extraneous signals, since the

estimation procedure depends critically on the assumption of a single source,

with the consequent cancellation of the unknown signal amplitude and phase in

the ratio, zI/z 2 , upon which estimation is based. The presence of another

*signal component can be detected, however, and this fact used as a flag to

inhibit processing of the affected data for signal location.

Interference detection is accomplished by adding a third hypothesis,

"multiple targets", to the single-target and noise-only hypotheses already

discussed. If two signals are present, the pdf of the sample pair has the

standard form

10
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f(zi, Z2) 1 1 -(L2/2

S4w

which applies to all the hypotheses, but In this case L will be
:L2 ,z ~ ,2v1 J

L - Iz - by - b v 1  + IZ2 - by2 - b'v2' 2

Here b and b' are complex amplitudes, vi and v2 are voltage gains for the

first signal component, while v1' and v2' refer to the other. The second term
can be made to vanish by the choice

b' -rv(U2-bv 2 )

leaving

1:.I'- -2 r"-2 + Iv2 -2r -

for the remaining term. By choosing signal locations at different points on

the characteristic, so that

V1 1 V
; - * -2,.,.v 2t v2

A* we can make this term vanish by a suitable choice for b. Further signal

components are superfluous, hence the multiple target hypothesis always allows
us to make Min L2 - O.

For any hypothesis concerning the signal structure, we can define the log
likelihood function

A log Max f(zl, Z2) - - (w2) L2

a, 11
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"4 where Max and Min refer to signal parameters contained In L2 . For the

noise-alone hypothesis, HO, there are no signal components, hence no

parameters, and we have

.14
-.1A 0  - L02 -log(4w 2)

where, as before,

L2 1z,112 + 1:21

When one signal component is allowed (hypothesis HI), confined to the

characteristic trajectory of the system, we have found that

Min L2 - (i:112 + is212) sin2(1/2)

where A is the minimum distance attained by the ML estimate of location, and

hence we cau vaite

Al " - f LO2 sin2 (A/2) - log(4w2 )

Finally, for the ultiple-target hypothesis, H2, we have

A2  0- log (4W2),.

since we have shown that Kin L2 - 0 in this case.

In pairvise hypothesis testing, such as H I verus H 0, we compare the

difference of the log likelihood functions to a threshold. Thus, we accept Hi

over HO If

A, -A0 )p

12
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for some constraint 0, which will be chosen to meet the false alarm

probability requirements. The resulting test, In this case, has already been

discussed. To generalize the testing to multiple hypotheses, we introduce a

.* constant, Vk, for each hypothesis, and consider the numbers Ak - 15k, for k-O,

I and 2. If the largest of these occur for k - £, then hypothesis H, is

chosen. This procedure generalizes pairwise testing in a natural way, and

(with an arbitrary tie-breaking rule) leads to an unambiguous choice of

hypothesis In every Instance. This procedure can also be viewed as a special

* case of Bayes hypothesis testing with a suitable cost matrix.

Since only differences of the uk affect the decision process, we can

take the largest of the numbers

T0  - L0 2- P0  ,

T1 =- Lo2 sin2(1/2) - tii , and

T2 a - 112

as the basis for decision. Finally, we can add U2 to each of these quantities

and base decision on the smallest of the numbers

to 3 L0
2 - CO

tI S L0
2 sin2 (1/2) - C1 , and

t 2 E O.

We have Introduced new threshold constants, CO- 2 (I*2 - isO) and C1-2(V2-U1).

It is interesting that L 2 and A are sufficient statistics for the02
three-way decision process. L0  Is a measure of the total energy contained

£

In the two saples, and A is a measure of how closely the data ratio, a / 2 2

13
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resembles an ideal signal ratio, i.e., a point on the characteristic

trajectory. With two signals present, the data ratio can be anything, even in

the absence of noise. If this ratio falls on the characteristic by accident,

the data will look like a single target, and there is no reason to expect the

receiver to decide otherwise. But usually, the data ratio will off the

characteristic when an interferor is present, and t will allow us to sense

this, even though the received energy is large. In a simple test of Hi versus

HO, the receiver will choose H1 if the received energy is large enough, even
the estimated location is far from the system trajectory.

To see how the decision mechanism operates, we can define the equivalent

pair of statistics

X - Lo cos(A/2)

Y 3 L0 sin(i/2) , and

plot the decision regions in the X-Y plane. Since distances between points on

a sphere never exceed w, both X and Y are non-negative. The H0:H1 boundary is

given by tO - tl , or

L 2coo2 (A/2) - C0 - C•

Obviously, Co must exceed CI or we could never have tO less than t. Hence

the required boundary is the line

x- '/Co - c a Xo

Similarly, the HI:H2 boundary is the line

Y= V' -I Y 0

41
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and CI *s positvo to allow the possibility of having t1 < t2. Finally,

the IC :12 boudary is the circular arec +y /T .E VC A IX02 ye.
The three boundaries meet at the point (XO, YO), and a typical situation

would be as shown in the figure, where eadh region is labeled by the",

hypothesis chosen for corresponding data points. Only those segments of the

boundaries where the first choice changes are shown.

Y

H2

YS H HI

X8 X

In general, small sample energy results in the "noise-alone" decision,

while large energy implies either R, or 12. For R1 to be preferred, the angle

; must be small (the data point must be near the system trajectory), and the

larger the received energy, the smaller 1 must be. The parameters XO and TO
allow some control over the performance of the system, as characterized by

errors such as false alarms and incorrect editing.

In Section 7 we deal with the problem of Interference in another way. The

interfering sources are treated as stationary noise sources, and it is assumed

that the resulting noise covariance matrix is known. Maximum likelihood

estimation is then performed in the context of known, non-white noises. That

approach makes sense when one has an opportunity to observe the noise and then

attempt the estimation of target location before the noise has changed
statistically. The treatment in the present section is complimentary to this,

dealing with intermittent and unpredictable interference In a simple way, by

recognizing and discarding contaminated samples.

15



* 3. IDEAL PHASE-COMPARISON AND IDEAL ANPLITUDE-COMPARISON NONOPULSE

A phase-comparison monopulse system is essentially an interferometer,

which employs two identical antennas with separated phase centers. If the

complex voltage gain of either antenna, relative to its own phase center, is

V, then the corresponding gains relative to a phase center midway between them

can be written

Vi('r) *V e ikcosy

V2(y) V e-ikcosy

The gain function V depends implicitly on the actual direction of arrival of

the signal, and it is assumed that the antenna boresight directions are

parallel. Our parameter y is the angle between the signal direction of

arrival and the baseline direction established by the line between the

separate antenna phase centers. The constant k, of course, is w d/X , where

d is antenna spacing and X Is the signal carrier wavelength.

*The normalized gain functions are

(Y) I eikcos Y + a

v (y) =- *ics+2

v (Y) 1 0-ikco s Y + a

where a is the argument of V. Only y can be measured by the system, of

course, and the gain ratio depends on this directional parameter alone:

v1(y) 2ikcos y

v2MY)

The characteristic trajectory of this system is, of course, the equator (or

part of it) on the unit sphere:

0 - w/2

. - 2 k cos

16
-9



If d exceeds y, the whole equator is possible and y is a aultivalued function

P. of #. As mentioned in Section 2, this kind of ambiguity cannot be resolved by

the system, and the best we can do is to estimate #. By restricting our

discussion to the estimation of #, we are dealing with all phase-comparison

sytems, and the final translation of this estimator and its perforance back to

the parameter y will not be carried out. We also choose not to discuss the

* case d ( y explicitly, and define the "ideal phase-comparison system" as one

whose characteristic trajectory coincides with the equator of the unit

sphere.

For the Ideal phase-comparison system, we obtain immediately the

well-known result that the ML estimator of # is

-= inarg (zI/z 2) arg (Z2*Z1)

since the projection of a point on the sphere to its equator is along a

meridian, preserving azimuthal angle, or longitude. Since A - in

this case, we also obtain the detection criterion

. 71 2 211
,"1 2+ Iz21)(1 + sin n), const.

But

2 2
Z(Ill + IZ21 )sin n - 21--z2* ,

and therefore detection is based upon the equivalent rule

Iz11 + 1Z21 > const.

In amplitude-comparison monopulse, two antennas with different patterns,

but sharing a common phase center, are employed. In standard notation, the

gain of the "sum beam" Is E, and that of the "difference beam" Is A. We take

V1I A and V2 Z , so that

17
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vi (Y) v 1

V..2

The angle y is usually azimuth, and the key assumption is that the gain ratio

is a real function of y. This is generally true in practical

amplitude-comparison systems within the sun beam main lobe, and we define the

"ideal amplitude-comparion system" to be one for which the gain ratio assumes

all real values as y varies. Ambiguities are again possible, but the only

measurement supported by the system Is an estimation of the value of this real

ratio. Usually, A is an odd function of y and Z is even, hence we assume that

y - 0 corresponds to a zero value of the ratio.

The characteristic trajectory of an Ideal amplitude-comparison system is

obviously a great circle through the poles of the unit sphere, composed of the

meridians * - 0 and * - w. It is more convenient to use the equivalent

description * - 0, allowing 8 to range from - w to + w, and then

v1 (y) . tan (0/2)

v2(Y)

As before, we study amplitude-comparison systems in general by dealing only

with the estimation of 0. The properties of individual antenna systems enter

only when 8 is expressed in terms of y. This relation is usually simple, and

near boresight is often well-approximated by a linear dependence of 8 on y.

It is instructive to rederive the known results for amplitude-comparison

monopulse from our formulation. The estimate 8 is, of course, obtained by

dropping a perpendicular from the data point (n ,#) to the characteristic

meridian. By elementary spherical trigonometry, the result is determined from

the equation

tanS- tan n cos

18
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It is convenient to restrict 4 to the hemisphere

"1

and let A range over [-w, w) , in which case it ii be found that 8 is

uniquely determined by assigning it to the same quadrant as n. it is also

seen that the distance, A, to the characteristic never exceeds - and is

determined (using the Law of Sines) by

sina - lsin sin *I.

Amplitude-comparison monopulse is usually discussed in terms of the gain

ratio, as a real parameter u, and the data ratio, as a complex variable w.

Then

- tan (6/2)

will be expressed in terms of

v tan (/2)e .

This connection can be derived by noting that

*tan 2
I _.( )2

and that

2 Re(w) 2 tan (/2,)cos tan in cos o .
1 -1iI -t'anz(/2

The solutions of the resulting equation:

U - Re(v)>

1-(,)2 , - lwl2

19
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are

Iv12 -1± , (Ivlv -1) + 4 Re'(w)U, 2 Re (w)

But

Re2() . W I2+ 1 Re(W2)::. Z 1,,1 2 e ,

and hence (IWI-l)2 + 4 R02(w) - IW1" + 1 + 2 Re (W2) Iw2 +112 ,

which gives

,, . I,.,2 -z, ,2 + 11
,.-. 2 Re(w)

The sign ambiguity Is resolved by considering the case

w m- x real.

Then u+ - x and u- - -I/x * and only the positive root is consistent with

the constraint of keeping 6 and q In the same quadrant. Thus
. j g v 1 -21 w:! 2 + .11" + I,,I2 -1 2 Re (,,)

2 Re ) " IvT + '+ I -Ivlz

* the desired result

As for the detection criterion, we note that

.442 ss*22
S i " 1z,1 + IZ212 1 z+ Ivl

so that

sin . Isinn sin*I - 1, (w ,I

20
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Then

cog a- (1+ lwI 2)2 -4 1m2(w) - 11+ I

I + jw2  1 + w2

p .as a consequence of the identity

-m2(w) w- wl2- _ Re(w 2)

p and we obtain again the known result (2 ) for the detection statistic:

- (IZ1l2 + 1z12)(1 + cos a)

- (1z 112 + jz212 tI 2 :22
S+ z!2

. - (}._1) + 1za12 + jzi Z + z 21)

The approximation u w Re (w) is often used in applications of

amplitude-comparison monopulse. The approximation is good whenever lwl<<l

(often the case for a signal near boresight) and. it is exact, as we have seen,

when w happens to be real. In terms of the sphere, the approximation takes

the form

tan(0/2) w tan (n/2) coo*

which is not a natural one to make in this context.

The analysis given in this section is aimed at developing familiarity

with the formulation of monopulse problems on the unit sphere. The

idealizations made here, of two special great-circle characteristic

trajectories, are commonly made, in some form, in the conventional analyses of

these problems. They are often acceptable because they fail significantly

21
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only outside the range in y at which the system normally operates. One

usually does not expect amplitude-comparison monopulse to work in the antenna

backlobes, for example, and past tracking data is almost always employed in

some way to restrict operation to a well-behaved, main-lobe portion of the

coverage which also permits unambiguous conversion of y to actual signal

direction.

22
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4. TRANSFORMATION OF COORDINATES IN MONOPULSE ANALYSIS

It has been known for a long time that the analysis of an 'amplitude-

comparison system with sum-beam output Z and difference-beam output A can be

transformed into the analysis of a phase-comparison system by the introduction

of the new quantities

:.. S + -(- C ± ia).
V1

The signal components of the new "coordinates" are equal in magnitude and the

noise components are again independent with the same variances as before.

Formulated in terms of S+ and S-, the problem is mathematically identical to

one of pure phase-comparison monopulse. This is not, of course, an accident.

In this Section we introduce a class of simple, linear transformations of the

data pair, z1 and z2 , and investigate the induced transformation of

coordinates on the unit sphere. It turns out that data transformations which

preserve the "white" character of the noise samples (independence and

equivariance) induce rigid rotations of the sphere and, in particular, the

transformation from (E,A) to (S+, S-) can be derived as the one necessary to

rotate the characteristic trajectory of Ideal amplitude-comparison monopulse

into the equatorial characteristic of its pure-phase counterpart.

We consider the samples, z1 and z2, to be components of a vector, z, in

a two-dimensional complex space, writing

2

Similarly, the normalized gains and the noise samples are components of

- vectors v and n, and we have

z - bv+no

The conjugate row-vector to z is z , given by

tz Z2 *]

23



and the covariance matrix of the noise vector is denoted

M - Ennt.

We have modeled this noise as white, each complex component having variance 2,

so that

H 2 12,

where 12 denotes the 2 x 2 unit matrix.

Suppose we define new variables, z1 and z2 , as linear transforms of z,
and z2 by writing

2I

z T z:]

where T is a non-singular 2 x 2 matrix with complex components. In terms of

z , the system has gain vector v - T v, and a noise covariance matrix

9 t tM T T t  2TT

where Tt is the complex transpose of T. Obviously, if we choose T to be

unitary, i.e., TT - , than the new noise covariance matrix is the same as

the old, and moreover the new gain vector is automatically normalized.

-. To any vector, such as z, there corresponds a point (i,*) on the unit

sphere, determined by the equation

tan(n/2)e i, .
z 2

24
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b

This correspondence is many-to-one, since z can be multiplied by a complex

scalar without changing n and *. The transformed vector, z'- Tz, determines

another point (n', *3 on the sphere, through

t a n ( rn 2 ) e * = 1

z2

and hence the transformation T induces a mapping of the sphere onto itself.

This mapping is given explicitly by the equation

tan'n/2, , T1  tan(n/2)ei + T
tan(2)e tan(n/2)e +

~~~T 1 ta~l) i  22

in terms of the components of T. This relation will be used repeatedly in

this study.

Now it is an established fact. -that when T is unitary, the induced

transformation on the sphere is a simple rotation. This equivalence Is easily

proved, as follows. Let

by a vector in our sample space, and consider the Inner product

* " * " * s

(a,s) = aI  1 +

If

a2
'; ,-- "= ten(el2) €

S2S

25

.47

- . -................................................................................................



f- ... ..ta

-ft4 Then

2 2
"sin (0/2) ,

la I + 1a21

2

,a.,. . .. = cos (8/2) , and

exactly like the relations used in Section 2. Then, writing 1ail - (a~a)

and hizil - (z,z) for the norms of these vectors, we compute

K)I 2 l2 2  2 + n12 22

- 2 2 r1 -cosO -Conl ++cos I+coon

1"-.-. 11a l a +-

In terms of A the distance on the surface of the sphere between the points

(0,#) and (ii,#) , we have

2= 2 2 1 + Cosa
I(az) l- Iat 1111 2

since

cosh cosO coon~ + sinO sinni co.o*-

Now suppose we introduce a unitary transformation, V, and define the new

ft

*" vectors a' - Va and z' - Vz. To these vectors correspond points (e, ,) and

i, 9) on the sphere, and obviously

26
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1 )2 2 2 1 + Coa'i (a . 11.111 I ... 2

where A' is the distance between (0', #') and (T' ".But a unitary
transformation leaves inner products and norms unchanged, and we can

* immediately conclude that A' - A , so the transformation of the sphere has

preserved the distance between the original two points. Since these points

were arbitrary, the transformation must be a rotation.

The fact of this equivalence is all that is needed In this entire

analysis, although it is useful to know exactly which unitary matrix

corresponds to a prescribed rotation. A simple derivation of this detailed

correspondence appears in Appendix A, where the amplitude-comparison /phase-

comparison transformation is given as an example.

From an analytical point of view, Ideal phase-comparison and amplitude-

comparison systems are versions of the same basic problem, expressed In

different coordinate system. Since any rotation of the sphere can be

effected by a simple unitary change of basis in the sample data space, we can

say that all monopulse system are equivalent whose characteristic

trajectories are great circles on the sphere. We refer to these as "great

circle systems", and say we are working In "ideal phase-comparison coordinates"

when we have rotated the characteristic trajectory onto the equator. The

important portion of a non-Ideal trajectory of a real system can be

approximated by a great circle arc, and then rotated onto a portion of the

equator. The Ideal phase-comparison estimator, #A - #i, can then be used as

an approximation, and expressed back In terms of the original sample variables

of the system.

A broeder class, whose Importance will appear later, includes all systems

whose characteristic trajectories are small circles on the sphere. By

rotation, these are all equivalent to system whose characteristics are

circles of constant polar angle (parallels of latitude), say 6 - o. It is

obvious that the ML estimator of # for such a system is still $ ,and that
*the minimum distance attained by this estimate Is in S ol. From this

last it is "osily shown that the detection criterion is

27
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Iz1 sin(8o/2) + 1Z21 cos( 0/2) o threshold

In Part II it is shown that the accuracy of the ML estimator of 8 for this

system degrades as the characteristic trajectory recedes from the equator.

* For this and other reasons it appears that the great circle trajectory is the

best that can be attained with a two beam monopulse system.

%; So far we have emphasized unitary transformations of the data vector

because they leave the noise statistically invariant and preserve the

normalizations of the gain vector, while moving the characteristic trajectory

(whatever it may be) around on the sphere in a simple and useful way.

Non-unitary transformations are also important, and they are required in the

. whitening operation used In the analysis of monopulse in interference, in

Section 7. These transformations map the sphere onto itself in a more

complicated way, but the mappings are still conformal and circles on the

sphere are still transformed into circles, although without the preservation

of radius. A great circle trajectory is transformed by a non-unitary, noise-

whitening transformation into a small circle, and this explains the appearance

of "small circle systems" in the study. The basic theory of non-unitary

transformations, as applied to our unit sphere, Is the theory of linear

fractional transformations of the complex plane. If we write (Zl/z 2) - w and

(zl'1z2') - w', then clearly z' - Tz implies

T 1 1 w+ T12
T1 + T 22

as we have already seen. The properties of these transformations are

well-known,' and carry over onto the sphere by means of the conforality

and circle-preserving properties of the stereographic projection. Some of the

analysis in this study, particularly In Section 7, is motivated by the known

properties of linear fractional transformations. The exposition here is

self-contained, however, with proofs of statements given in terms of spherical

coordinates, when needed.

28
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5. EXTENSIONS TO MULTIPLE-PULSE ANGLE ESTIMATION

In this Section we make two extensions of the analysis, each

characterized by the use of multiple sample-pairs as inputs to the estimation

problem. Our first example is rather simple, and represents a class of

problems exhibiting signal coherence over the set of samples. The point of

the example is to illustrate the problem of the simultaneous estimation of

angle and other signal parameters, such as Doppler frequency. Without

additional parameters, nothing new would be introduced by multiple coherent

samples, which is a situation already included in the formulation given, since

the original signal waveform was quite general.

We formulate the problem directly in terms of the sequence of sample

pairs, zl(n) and z2(n), where the subscripts refer to beaus, or channels, as

before, and n is a sample index running from 1 to N. We postulate that the

signal components of these samples have the form

Ezk(n) - b S(n)vk(Y) ; (k - 1,2)

. where b is a complex amplitude parameter and vl(y) and v2(Y) are normalized

beam gains, just as before. The new feature is a complex signal sequence,

S(n), presumed to depend upon one or more implicit parameters, a, and

normalized as follows:

'"N 2Ni IS(n)I . 1.

The motivating example is Doppler modulation, in which a sequence of returned

radar pulses is passed through a matched filter, as described in Section 2,

with the result that the complex output amplitudes are modulated by a Doppler

, sequence, such as

n aS(n) =

12n

".,: 29
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In all cases the noise is assumed to be white, and independent and
statistically identical from sample to sample.

Maximum likelihood estimation of all the unknown parameters immediately

reduces to the minimization of

L E n j {zi(n) - b S(n)vl(y)l + 1Z2(n) - b S(n)v2(Y)1}

-2 Re [v*(y)S*(n)zl(n) n+ {IziSn)I 2 + IbI

We have made use of our normalization conventions, and we now introduce the
definitions

2 n 2
E Z zV(n)I
n-I

2 2 2
lizill + lIZ211

and

n*

f k (8,2 k) =E S (n)z k(n)
Un1

The unknown parameters represented by a are now implicit in flan f2.

Substituting, we obtain

L o IbI2 Refb*[vl*(y)fl 2*Y f211

which yields

-j v 1 fl + V2 f2

30



and 2 2 V * 2

Min L - - Ivfl + v2 f2
b 0

The ultimate estimates of a and y are to be substituted into bl to yield b.

2
Note that our expression for Min L is exactly the same as the one derived

b
in Section 2, except that fl and f2 replace z1 and Z2. Thus we could

interpret the zk(n) as pairs of time samples of the incoming signals at the

antenna terminals. The independent noise samples would then be direct samples

of wide band white noise. The fk are, of course, correlations of the samples

with an expected waveform, with or without parameters like Doppler. Then, by

a somewhat heuristic limiting process, one could conclude that matched

filtering was a good thing to do before proceding with angle estimation. But

this was the processing postulated in Section 2, and the point of the present

discussion is that matched filtering is a proper part of the overall ML

estimation problem, starting with the incident time waveforms.

The characteristic trajectory of the system is the same as before,

introduced by way of the definition

-- z- - tan (0/2) e

But now the data is represented by the point (n, *), determined by the

definition:

f= tan (n/2)e

which depends upon a, yet to be estimated. If A the arc distance between the

* points (vi,#) and (0,#) are the unit sphere, then we have

Min L L (1f1I + If2 2 )(1 + cos A).. b 0o

since the expressions are the same as in Section 2 with the fk replacing the

Zk
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With an arbitrary system trajectory, the estimates of y and a will be

coupled in a complicated way, since A will be the minimum distance between the

characteristic trajectory and the curve or region represented by the points

(TI, #). However, for a simple trajectory, the estimates can be separated and

performed in a direct sequential way. Using the small-circle system as an

example, the characteristic trajectory is fixed by e - e0and for given a, * is
estimated as

"" @ =arg (f fl)
A

and A I In - eo1 0 Finally, a is estimated by maximizing the expression

1 2+ 2
S(If l +If 21 )(I + cos )

(l l2 2) 2 2

If2 ) + cos 6o(If 2I - If1l ) + sineo f1f2*l

[sin (e0/2)Ifl(a)I + cos( 0/2)1f2 (a)I]

For an Ideal phase-comparison system, this, of course, reduces to

2
(Ifl(a)l + If2(c)) •

The final estimate of # is the value of * evaluated at the ML estimate of a.

In our second example there are no other parameters, but the sample pairs

are modeled as incoherent, with as many unknown complex amplitudes as there

are sample pairs. Specifically, the signal components are taken to be

E - zk(n) - b(n) vk(Y)

with all the b(n) unknown, and the same noise model as in the previous

example. Then

.43
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2 2 n 2 n
L L + E jb(n)I -2 Re E b (n) [v* (y)zl(n) + v2 (y) X2 (n)]n-i n-I

and the amplitude estimates are

i', bl(n) - vl*('Y)zl(n) + v; ('Y) z2(n) "

The estimator, y , will minimize

2 2 n 2i" Ivl*(YL z Il(n) v+ 2
M L - L - + ,where thei:, o n-1

Min is taken over all values of the amplitude parameters.

We expand and write

-. 2 "2 ] I 2 _ 2 2 ,(yv,.,,

Min L - L 0 vi yI 2 I z, I -1v2(Y)f I Z21 -2 Re v1*(Y)v2(T)(z2, z1)

where

n
(z2 ,z1 ) z(n)z2 (n)

n-1

The reduction of the data to an equivalent point on the sphere is less

straightforward now, since

: i(2,.1 2 2 2

(zz ) 2 * I Z 1  I I Z2 
1

2 2*
. except as a very special case. But substituting for tvIG Iv 21 and v1v 2

in terms of e and * , according to the formulas introduced in Section 2, we

find

2 2 2 2 2
MInL"L I Z11 ( - cose) - I z2 (1 0 + cosO)

-sin 8 Re ei#(z2,21)

33
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1 2 1 2 2

LO (I z2 I -I zi I )cose - sinel(z2,zl)Icos(*-4)

where

S arg (z2, zI)

We define Q and n by the equations

2 2
Q cosn z I2 1 Iz I

Q sinn - 21(32,z)l ,

and then

2 1 21
Min L 2o Q cosA

where

cosA - cose coon + sine sinn cos ( - $)

as before. Of course,

( 2 2 2 2

Q v( z2 12 - I1 1 2)2 + 4(z 2 ,zi)I

and

tan(n/2) 6 1 4 n z T 2
1 + CO5l Q + iZ21 -lz1 I

a-- 2
When N-1, Q reduces to L and the right side of the formula above becomes

simply s1/s2, as it must.

For a general trajectory, the estimation of y will be a very complicated

function of the data, but for a great-circle or small-circle system, using

phase-comparison coordinates, 6 will be constant and * given by the relatively
simple expression

', " O " rg (s2,s)•

r. 34



The corresponding detection statistic is

1 2 1
L + Q cos( - 8o)

2o 2 o
" z1  I + Z2 1 ) COO eo(1 z2 I Z11)

+ sineol(z2,z)t

2 2 2 2
= sin (eo/2)1 zI + cos (e /2)1 z2 I

+ 2 sin (0 /2)cos(8 /2)l(z2,z1)l

The ML estimator * can be expressed in terms of the individual estimators for
each sample pair, namely

* (2 n) 1z(n) )
-arg arg 77

since clearly

• a% 4,- mr.J z I.. nL.A (- l nInl

1% rn-1 in

This expression shows as a nice mixture of coherent and incoherent

processing. The individual * - estimates are combined in an essentially

coherent way, as a weighted sum, which is appropriate since the signal ratio

is constant for all the pulses. The samples appear as weights in an

incoherent form, since signal phase is unknown and variable from pulse to

pulse.

I.
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77 .7

6. GENERALIZATION OF THE NOISE MODEL

The remaining sections of Part I are concerned with non-white noise.

The natural cause of correlated noise samples will be external sources of

deliberate or accidental interference. Various noise models are discussed in

this section, and it is shown that the general case is equivalent to a mixture

of white internal noise and a single external noise source.

For the general noise covariance matrix,

FM11 M12 ]

Min

L"H2 1  H2 2

i *
the diagonal elements must be real and H2 1 must equal M 12 , since H is

Hermitian. Moreover, M is positive definite, which (in the two-dimensional

case) is equivalent to the requirement of positive trace and positive

determinant. If we write

':a a- b ce i

cece

with a, b, and c real, then we require

a> o

and

2 2 2
b + c < a

These conditions can be met by changing parameters again, introducing

b - d cose

c - d sine

36
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I

and

a-nd+f

with d and f non-negative. Thus one general form for M Is

f + d (1- cosO) d sineO

sine • f + d (1 + cosO)

with positive f and d and unrestricted values of e and *.

Now consider an external source of noise, at azimuth yj , so that in the

absence of signal the total effective modulation at the antenna terminals is

given by

Zk - Wj(t) v ,j) + Wk(t) ; k - 1, 2

Here the Wk(t) are white noise modulations as in Section 2, and Wj(t) is an

independent white noise process, with spectral density Nj :

K Wj(t)Wj(t') - 2 Nj 6(t-t').

Note that Wi is used with normalized beam gains.

Following Section 2, we assume a matched filter system, with output

samples

sk - Jk+ k

The white noise components are unchanged, with

-2

and the interference components are

Jk " G Vk(Ya) f s (t)wj(t)dt.
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It follows that these components are zero-mean, circular Gaussian samples with

- covariance matrix

2 *2
- k - vk(Yj)vI (Yj) G E I f S*(t) Wj(t)dtI

- 2Nj *
"" Vk(Yj)vt (YJ)

as a result of our filter gain normalization convention. The location of the

interferor is characterized on the unit sphere by the point (0j *J) , where

V2(YJ) tan(e /2)e

so that

"vi( j .-- (1 - cos eJ)

2
'v2(Y-) = (1 + cos e ) and

vj( j~2( - sin e eie

In terms of the parameter

j+. N
2 N

0

the covariance matrix of the total noise is

I 4 J l-0se i

":'+'M = 2

LJ sin e e- J Ij: :: +JO + coseJ)]

38
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Comparison with the general form shows that any noise model can be

expressed as a superposition of white noise and an external source, provided

that source can be placed anywhere on the unit sphere, and that a suitable

scale factor, common to both channels, is introduced. This scale change will

only affect the significance of the signal amplitude parameter.

It is not illogical to place the interferor off the characteristic

trajectory of the system, since that trajectory may well be an idealization

only valid in the system main lobe, and used only in the estimation of signal

azimuth. In any case, as we shall see below, the resultant of a number of

external sources, all on the trajectory, is itself off the trajectory except

in a special case.

The significance of the parameter J, essentially a ratio of intensity of

external to internal noise, may be seen by noting that

(I12 2, E (Iill + IJ21l )
J I

E (In,[ + (n2l )

When signal components are added, they have the same form as before, namely

E zk  b Vk(y)

where

12 2 E8

0

and E. is still the total energy collected by the two beams. The effective

signal-to-noise ratio of the sample pair, when both signal and interferor are

present, may be taken to be

39
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• .'1 2+ l bI 2

.: il + M22  4(1 + J)

. 2No0 + NJ

By means of these relations, the theory can be applied to any model of signal

and correlated noise, but we retain the notation of the noise covariance last

given, in terms of J, 8 and #j, because it Is intuitively useful. Note that
iJ

Tr"  - 4(+J)

and that

Det(M) - 4(1 + 2J).

It is instructive to examine the case of multiple external sources, which
are characterized by locations (6s, *s) and relative intensities J , where a

5 a
runs from 1 to S. The sources are assumed to be independent, and the total

covariance matrix, including normalized internal noise, will then have

S, components

Ml 2 21 + E ( - con es)

'a=

M22  2 1 + E 1  0 +co )

8-1

S
H 12  -2 E J sin e • , and

M2 1  M12*

We equate this to the matrix

['2! 40
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S 1+ J(l-cos Oj) J sin j J

2

J sin 8Oe - #J I + J(l + cos ej)j

which corresponds to our standard form with a scale factor k on each channel.

The multiple sources will thus correspond to an equivalent single source,

together with a modified internal white noise component. The connection

equations are

2 ij - S
k J sin6O et" J  E Js sin Os se

Sul

2 S
kj cos e E J cos e and

s-i

2 S
k (l + J= I+ si 

Equating arguments on each side of the first equation yields #j, and the

equality of the remaining magnitudes, together with the second equation, fixes

j and the product k2 J. Finally, k2 Is found from the last equation.

It is interesting to find the location of the equivalent external source

on the unit spore. Let uj be a unit vector whose rectangular components are

given by

(u cos 8
=J z

(-J)x - sin ej cos #j

S(uj)y - sin O sin 9j,

and let u , s-l, ...S, be unit vectors corresponding to the angles (8s,*s).
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We equate real and imaginary ports of the two sides of our first equation

above, and combine these two with the next equation, supplying appropriate

unit vectors, to find

-k2 J  EJ
.=s

* . Thus, for two sources, the resultant lies on the great circle arc joining the

*. respective points on the surface of the sphere. This resultant is combined

with a third source, and so on. The resultant of all sources lies within the

smallest convex region which includes the individual locations.

With a group of external sources, each located on the system trajectory,

the resultant will generally be off that trajectory. The one exception Is

the great circle characteristic.

'.4
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7. MAXIMUM LIKELIHOOD ESTIMATION OF ANGLE IN THE PRESENCE OF INTERFERENCE

We have shown in Section 6 that the general case of correlated noise in

the two monopulse channels Is equivalent to a model having white noise

components, together with a single external source of appropriate strength

and location. Specifically, the complex samples upon which estimation will be

based are taken to be

Zk k + Jk+nK; k , 2

where

sk b vk(Y)

and Jk Jovk (Yd

Here b is an unknown complex signal amplitude, y represents the signal angle

(azimuth or elevation) to be estimated, yj is the known angle of the

interference, and Jo is a complex, circular Gaussian variable representing the

• :interference amplitude after filtering. The strength of this interference has

been characterized by the parameter J, In such a way that

2 .2Nj

II J

4l.l - -Tn 4 J

0

As usual, the white noise terms n1 and n2 are independent, complex circular

Gaussian variables, with

2 2
Elnl = E.n2l 2.

The particular definition used for J is Influenced by the desire to keep the

formulas which appear later in this section as simple as possible. Its
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a

F

relation to signal-to-noise ratio is discussed in Section 6. In this section,

b is an unknown nuisance parameter, but its connection with signal energy and

internal noise level given by

2 2E

I -- 1N 0

is important in the analysis of estimator performance. With this model, the

total noise covariance matrix is

L + JO -cose) J sine e

M-2

J sineje-iJ 1 + JO + Cosaj)_

where

h .iY

tan(Oj/2)ei
tJ -

In order to solve the problem of estimating signal location in the

presence of such correlated noise, assumed to be known, we seek a

transformation, W, with the property that in the transformed coordinates,

z' WZ,z

the noise is white. The new covarlance matrix will be

('' - W M W
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and we require that

H'M 2 12

so that .estimation problem In the new coordinates will be of exactly the type

we have already discussed. The transformation matrix, W, cannot be unitary,

since a unitary transformation would leave n statistically unchanged while

making j look like a sample vector for an external source at another location.

In fact, the transformed covariance matrix would look just like M, with the

same value of J and a new location (8'j , #,j ), fixed by the effect of the

-. corresponding rotation on (Oj , +j ).

Since W is not unitary, we do not know, in general, what the

characteristic trajectory of the system will be In the new, whitened,

coordinates. Moreover, there are many choices for W, Indicating the

possibility of many different characteristics in the new coordinate system.

Fortunately, all the whitened coordinate systems are simply related and, in

fact, one can be transformed into any other by means of a unitary

transformation. Thus, the various "whitened" characteristics on the sphere

4differ by simple rotations. To see this, note that If W is a whitening

transformation, then

;. 2 WI(Wt)- 14 ,

and hence

Wt W 2k-1

If V is another whitening transformation, then

VV U WtW

from which it follows that

4.
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W V-1 - tt

which implies that

(V W - (V W) t

Thus V W- I is unitary and since

[' Z" =- V z - (V 4-) 2',

the result is proved. This fact allows us to choose W in such a way that

the characteristic trajectory is changed in a controlled and desirable way.

When the estimator is then transformed back to the original coordinates and

expressed in terms of the original data, the result will be independent of the

choice made for W, so long as W whitens the noise.

Perhaps the simplest example of non-white noise is described by a

diagonal covariance matrix. The noise components are independent, but have

unequal variance. In terms of our general covariance matrix, the equivalent

external source Is at one of the poles of the sphere. Such a source would be

In a null of one of the antenna beaus. The simplest whitening matrix for this

case is also diagonal,

%"0 b

with the scaling factors, a and b, chosen to adjust each noise component to

the standard variance, namely 2.

The mapping of points (0, #) Into new points (0', #') on the sphere is

very simple in this case. The general transformation equation reduces to
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tan (e'/2)e '  a tan(0/2)e' ,

for this situation. The longitudes of points are unchanged (,'0 *), while the
r latitudes are distorted by the non-linear transformation of the polar angles:

7-i tan(8'/2) - tan (6/2)
b

If, for example, a > b, then all points are moved toward the south pole, and

!' points with small values of 0 move more than points farther from the north

pole.

A meridian, such as the characteristic trajectory of an ideal

amplitude-comparison system, is invariant as a curve, but individual points

are transformed according to the above equation. A parallel of latitude is

displaced to a new latitude, but the relationship of points before and after

the transformation is particularly simple, since longitude is preserved.

Actually, this transformation (indeed, any linear transformation of the

coordinates) takes circles on the sphere into other circles, but we can

arrange things so that these general properties are not required to solve the

estimation problem.

To deal with the general covariance matrix; we proceed indirectly, asking

first what transformations (beside rotations) leave the equator of the sphere

invariant as a curve. We intend to deal only with the case of an ideal phase-

* comparison system in general noise, since any system with a circular

characteristic can be reduced to this case by a rotation followed by a

diagonal transformation, and the resulting noise covariance matrix can then be

represented in our general form. The effect of a general transformation,

a- b

.c[ di
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on an equatorial point, (w/2 ,*), is given by the equation

a el# + b

tan(e'/2 )e -
c •9 + d

If we choose c b* and d - a* ,the right side can be written

i
2 -1 2

ae i + be-t

"- " 2- * -i 2

be + a e

which obviously has magnitude unity. Thus

o a ]

L '-b a _

is an equator-preserving transformation, and it is not hard to show that the

most general transformation with this property has the form of W, followed by

a rotation about the z-axis of the sphere. This last rotation is of no help

in whitening the noise, hence we see what can be done with the form for W

given above. Since a matrix to whiten H satisfies W - 2W 1 , we find out

what W can do by computing

lal 2 + JbJ 2  2 a b

.t2

2 ab 1a12 + 1b1 2 _

48



-itj

1 + J (1 + cosej) -J sinOJeiJ

;' 'w=2-11

I + 2J

-J sine-.'6J 1 + J(1 couej)

Let us define

- tan ,v/2)ei
a

and put

2 2
lal + JIb = 1

since a constant factor can b. absorbed in the quantities d+ and d- . Then

2 2..2 2.
lal- cos (0/2), ibI - sin (0/2)

2 a b =-sin e ,and

d+ + d- + (d+ - d-)cos i -(d+ + d-)sin ie

WtWm~

2

-(d+ + d-)sin WO d+ + d- (d+ -d_)cos8

Comparison with the desired form shows that we must choose

,.
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and (equating the traces),

l +J.I +oj

: / -' " ( d + d -) =
* o' 14+ 2J

Finally, we must have

J sin-Sin6 -

1+J

and

1 J cos jI (d+ - d_) - -

I + 2J cos

We find 8 from the equation for sin 8, taking the solution in the first

quadrant, and solve for the diagonal factors:

" + { J cos ej (
1- + 2J (0 + J) coo

*Notice that

o 2
- 1-n j 2 1 + 2J + J cos ej_Cos 2  (j =i 2

I + 0 ( + J )2

so that

1 + 2J + j2 cos j

coo 8 =
1+J
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The diagonal elements are equal in this matrix, and the same will be true of

its inverse, hence W can only whiten noise covariance matrices which

. correspond to external sources on the equator (to make cosej - 0). For a

* qperfect phase-comparison system this would be the case, but as discussed in

Section 6, we wish to analyze the model having an ideal phase-comparison

trajectory but arbitrary noise.

Although a matrix like W cannot whiten the general noise covariance, it

* turns out that such a W can diagonalize the general M. To put it another way,

M can be whitened by a sequence of two transformations, the first of which

preserves the equator, while the second is an appropriate diagonal matrix. To

see this, we write the general such two-stage transformation matrix in the

* form

d 0 a b

0 d b a

*. where d+ and d. are additional parameters, which will be real and positive

*. (complex factors can be reduced to this case by z-axis rotations). Again we

*" compute WtW, and find

[d+a!I + d- Ibl' (d+ + d-)a*b ]

(d+ + d-) ab* d+ Ib2 + d.IaI 2

Now we have enough generality to match any noise covariance matrix, and we

require that
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The positive root reflects our earlier choice, and the formula shows that

1- ;,,,, g J coo ej

' 0 + J) coo 0

so that d+ and d- are positive.

The whitening properties of W depend only on the relative phase of a and

*b, and we choose to make a real, coipleting the specification of parameters in

W. Altogether, we have

J cos 6 j
1 + J + 0 coa(U/2) -sin(6/2 )ei J

cos

il +2J

'. J cosj-#

0 1+ J- -+ . . -sin(0/2)e-J cos(el2)
cose

The first stage of this transformation preserves the equator; the second moves

it to the circle parallel to the equator, a distance O' from the north pole,

where

S(1+J)cos + J cos ej d+tan (0'/2) . . . . . . . .= - -

(1 + J)cos J cos ej
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Then

I - tan2 (W'/2) d- d

._.* cosO - 2,
I + tan (8'/2) d+ + d-

J cos ej
or cosO' -

S(1+ J) cosa

If the external source is in the upper hemisphere, the whitened

characteristic lies in the lower, and vice versa. The connection between

longitudes on the original equator and the new characteristic in whitened

coordinates is

W cos(0/2)ei -sin(0/2)eJ

_sin(0/2)e t (- #j) + cos(W/2)

which can be written

I # #J - # J

2 2
• - tan(i/2)e

eie l ' . j) M -

2 2
• ten(O/2)e

This in turn means that

i *J -i #j

- j 2 arg a -tan(i/2)e 2
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and therefore that

(.I +j 1 tan(6/2) #
tan - " tan

".2 1 - tan (6/2) 2

The point - *j onthe equator, and indeed the entire meridian containing the

source location, is invariant to the whitening transformation, thanks to our

choice of real a. The factor connecting the tangents can be simplified by

squaring it, with the result that

1 + tan (/2) 1+sin

1 - tan (i/2) 1 sinO

In terms of the original noise parameters, the mapping of points (w/2,#) on

the original characteristic to their images, (',)on the characteristic In

whitened coordinates, is described by the equations

J cos ej
cosO'-

S1+ 2J + j2 cos 26j.

an 1 +J I+sinj
. tan sin-. + J(1 -sne j)

A signal vector, by, is changed by this transformation to b W v, which we

write as

54.4
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'I
i b' v' =b WT v.

The change in the amplitude parameter Is needed since V is not unitary. The

I'. component ratio v11v2 defines a point on the original trajectory:

v! 4

1 v2

while v1 ' /v2' defines the image point, as discussed above. The new vector,

vs, is normalized, hence the new signal amplitude satisfies

Ib'12  - ,bJ2 IV1Ilvi + W12v2 1
2 + IW21Vl + W22 v2 12 •

We substitute for the components of W and note that

IvI12  - 1v212  1/2 , 2 v1 v2* I..i*

with the results

lWIlVl + WlV 2  T 1 + 2J 1 + J + coal sinS coo(##j)j

and

jW2 1 vI+ W22 v21 1 I + J Cos In cos(# - 4J)
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Altogether, we find

1 I 1/2
b' -b I + J -J sin ej cos #jI + 2J

which shows that the new signal amplitude depends on the original signal

location. This adds no complication to the estimation problem, since b' is

just a nuisance parameter, but the relation of b' to b is required to evaluate

the performance of the ML estimator in this case, which Is done in Part II.

Now that we have a suitable whitening transformation, we can complete the

analysis by finding the ML estimator of signal location in the new coordinates

and transforming it back to the original set. For a single pulse, the data

vector, z, is transformed to z' - Wz, and the ML estimator on the whitened

sphere is

' arg (z'I/Z' " {arg (z'2)*sl ,

since the characteristic is a parallel of latitude. In terms of the original

data components, we have

arg (S',)' 1)- arg f(W21., + w22z2 )* (W11z1 + w1,,)'

-argI[- sin(O/2)e -iJ z, + cos(!/2)z 2 J[cos(8/2)z1 - sin(,/2)e'"Jz2JJ

since positive real factors do not affect the argument of the quantity on the

right. Continuing, we get
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ir l* CO2. 2 2..~' -ar"ja* i cos (012) + zj*z2 sin (0/2)o

- sin(/2)cos(l/2) IzI2 IZ2 * J

. arg e J (1 + cos i)3132*6 1 j + Cosi)zl*z2 *ija

si i (111 2 + IZ212f

Finally, we factor out the positive quantity, sini, to obtain

' - arg cot(0/2)zz 2*e + tan (12)zl*z2  i

_il2 2 }
-(Izl 2+ I121 )

On the original sphere, the estimator, # , is given by the inverse of the

whitening transformation:

- 1t+ .n tan( 1

The source longitude, *j, enters as a sort of reference angle in these
expressions, which is a consequence of the fact that the source meridian is

9.- Invariant to the whitening transformation. It Is interesting that the other

noise parameters, J and Oj, enter these equations only through 0 so that the
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final estimator, *, for the general case is Identical in form to the estimator

for a special case having the source on the equator at the same longitude and

having an equivalent intensity, to maintain the value of e. The performance

.A

In the single-pulse case the formula for *' can be written so that it

depends on the data only through the ratio zl/z 2. However, in its present

form, this expression is easily generalized to the case of multiple pulses

with independent amplitudes, as in the second problem considered in Section 5.

We assume the noise is stationary over the sequence of pulses, so the

whitening transformation is the same for every pulse. Then *' is given by

A . n
-arg {E Z2  (n) zj' (n)

I-I

Repeating all the steps of the derivation just given, we easily find that

*1 Z; -a(/2eJarg cot(i/2)e- t#J  Z z2*(n)zl(n) + tan(n/2)e i#J  E Zl (n)z2(n)
In-1 n-1

. n 2 2

E (Izl(n)I + 1z2(n)I)
n-1

In the notation of Section 5,

E Z 2 (n)zl(n) (z2 , z1)
n-1

and

!2:1-',n 12
20 1u2  k 1 2z IZk(n) k

n-k

.58
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which allows us to write

- - arg I cot (0/2)(s2,zl) * -14j

+ tan (/2) (z2,l)*e j iZ 2 IZ212

The transformation from * to the desired # is, of course, the same as in the
single-pulse problem.

These relations provide a formal solution to the multiple-pulse

estimation problem in correlated noise. However, a more succinct result is

possible by following a slightly different line of reasoning. Instead of

locating the estimate as a point on the system trajectory in the whitened

coordinates and then transforming it back to the original sphere (according to

the equations just derived), it proves useful to consider the meridian on the

whitened sphere which passes through the characteristic at the longitude, * ,

of the estimate. This meridian maps back onto the original sphere as a

circle, which must pass through the equator (the original characteristic) at

the longitude ; . By pursuing the course, we obtain a simple, explicit

formula for ; , and also a geometrical picture of the estimation process as a

projection on the original sphere.

Without loss of generality we can take #j - 0, since the original sphere

can always be rotated to make this true, and the meridian corresponding to #j

(and w + #j) was preserved by the whitening transformation. Next, we

introduce the notation

2(z2, z1)

2 
2

IZ1l + IZ2 1

and notice that the equation for * can now be written

A

4 - arg {cot(0/2) r + tan (1/2)r* - 21
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Thus r is a sufficient statistic, in the original coordinates, for the
R estimation of signal location. The meridian through the ML estimator on the

whitened sphere Is the set of points

w' - tan(0I/2)ei

for all values of 8'. Replacing tan (0'/2) by a real parameter k, and

introducing the definition
~~ S- tan 6 /2),

we can write

w' - k 1r + r -2

As k takes all positive and negative real values, w' traces out the desired

meridian. The image of w' on the original sphere is w, determined by the

inverse of the transfotmation W. It is easy to show that

Det (W) - (1 + 2J) 1/2 ,

and that, in the general case,

a- cos(8/2) sin(i/2)e iI+ J 01+J 0

w-I .~ cosej

04U -

sin(/ 2 )e - iL J cos(/2) 0c+ J
~cosl

We substitute in the inverse transformation
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W-w' +

W21 w' + U22

putting #j -0 and using the notation d+ and d-. introduced before. The result
is

/d-- cos(8/2)w' + /d- sinO/2)

r/-- sin(!/2)w' + 4-+ cos(g/2)

Dividing numerator and denominator by Md+cos(e72) and recalling our

definition for Vm, we find

(d-/d +) 1/2 U' +i

W1 V (d/d+) 1 /2 U w +1

Nov we substitute for w' , and absorb the quantity (d_/d +)1/2 into the

free parameter k (without changing notation), to find

k ( r r+ r* -2) + V

-k r+ Pr - 2)+ 1 .

This is a par ame tric representation of the curve on the original sphere

which corresponds to the meridian of the estimator on the whitened sphere. For

the moment, we put
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r + pr -2 G

so that

kG + i
W ikG+ I

and solve as follows:

1 . w-

pw - I
.-;,k w - p G

The statement that the right side of this equation is real is the equation of

our curve. It may be written

(W'- ) ( w - ) G (w - ) ( w ) G

or

22 2* 2
u(G - G*) (l + 1) + (G* pi G) w - (G -uG) w -0.

But

* 1 *1

G-G -(; - i) (r- r )-2(,-j) Im(r)

and

2* 3 2
G- - ( - r- 2 (1- )

- -. ( + r) r 2

" 
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hence our equation simplifies to

l2
21 Im(r)(lw1 + 1) + + -r* 2 w

1"'1"!.,- + r r-2 w - 0.

Recalling the definition of U, we find that

1 + , - cot(g/2) + tan(i/2) - 2

sine

and therefore

2 (r- sini) w*- (r- sini)vIl +14-+i -no.
sin8 Ia(r)

It is easy to put this equation in the form

2 2
1w - wol 2- R 2

which represents a circle in the w- plane and also on the sphere, after

substituting

w - tan(0/2)ei

However, we can better describe this circle by Identifying certain points

which must be on it. If w is real, our equation becomes

2 2w
V +1- - "0

63



F. ;-7' -.-

which is satisfied by the values

w+ - tan(6/2) and

IV,

w- - cot(e/2)

These are the values w+ - p and w- - 1/p , which correspond to w' - 0 and

W " , the poles of the whitened sphere. The image points, w± , lie at

equal distance from the poles of the original sphere, on the meridian * = 0.
This is the meridian of the interferor, and w +represents the point (8, *j)

in general, while w- represents (w-8, *j). A line through w+ and w- is

parallel to the north - south axis of the sphere, and planes through this line

cut the sphere in all possible circles containing w+ and w- . Our equation

-'- describes one of these circles which passes through the equator at the point

The circle also passes through a point which depends only on the data

(note that w + and w depend only on the noise). To find this point, we must

pick w proportional to r, since that will cause sine to drop out of the

equation. Putting w - kr, with k real, we have

k 2i Il[2 + I 2 k "0
i 2°2

or

hence the points,

r

lie on the circle. They are equidistant from the equator, at the same

longitude. Thus * may be determined as the equatorial intercept of the circle
through w+ and w- which passes through R+ and L. If the interference

64

*1



goes away, i.e., J 0 0, then 0 + 0 and the points w+ and w approach the

poles. Circles through w+ and w- then become meridians, and is simply

arg(r) = arg(z2 ,z1 ), the standard white noise solution. With interference

present the lines of projection (the circles through w+ and w- ) become

distorted, moving * away from the value it would have in white noise.
To get an explicit expression for , we have only to put

'I.

wve

to find where the circle intercepts the equator. Substitution yields

(r sini)e-i# - (r'- sing)e 21 sinO-lm(r)

If

a arg(r- sini)

then

Iu(r)
sin(a - - sin -

Ir - sin8l

But Im(r) - Im(r - sinO), and hence

sin(a- *) - sLnO sia

or

* a - sin (sinO sina)

si" Im (r) )

- arg(r - sinl) - sin- 1
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As noted before, + arg(r) as sin8 + 0, which means that the sin- I on the

right side of the above equation must be taken in the range (-W/2, W/2). In

the general case, with interference at longitude +j, the result is

sin(a-+) - sin8 sin( -J)

" with

a arg(r- sinie ifj)

In the single-pulse case, we have

2z2 zI  2(z/1z2)

r
2 2 2

Izil + 1Z21 1 + Iz/z21

and it follows that

+ - zl/ z2 - tan (/2)e i

R- = z2*/zi* - cot(r1/2)e •

This simple result, that the projecting circle pass through the data point

S(i,$) itself in the one-pulse case, corresponds to the fact that, on the

whitened sphere, the estimator lies on the meridian of the data points

ZI /z2 '

It will be noted that our solution of the correlated-noise problem is
Si based on what might be considered a fortunate guess for the whitening

transformation. This approach was used because it minimizes the amount of

tedious algebraic computation required. Another method, which involves a

direct construction of the whitening transformation, depends upon the detailed
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correspondence between rotations of the sphere and unitary transformations,

which is developed In Appendlx A. Using this correspondence, one can write

the whitening transformation as a sequence of three transformations, as

follows. The first is a rotation which moves the location of the interferor

to the north pole. The noise ,covariance is then diagonal and the

Icharacteristic is a great circle whose center Is known. The second transform

is a simple diagonal whitening operation which changes the characteristic to a

small circle whose center and radius can be directly evaluated. The third

transformation is another rotation, which moves the center of the

icharacteristic circle to a pole, leaving us with standard white noise and a

trajectory which is parallel of latitude. It Is possible (but not simple) to

show that the result is exactly the same as the transformation, W, used above.

Still another method is to begin with a triangular transformation matrix

which removes from z2 its projection on z1, and equalizes the resulting noise
variances. This operation leaves the noise white and the characteristic

circular. By keeping track of what has happened to this circle, one can'I

rotate it Into position as a parallel of latitude. The result is again W, and

in all cases the meridian of the interferor remains invariant.
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8. NON-DETERMINISTIC SIGNAL MODELS

In all the cases so far considered, the signals have been modeled

deterministically, but with unknown parameters according to various

hypotheses. Instead, we can assume that the signal waveform is a random

process, such as white noise, or simply postulate that the signal components

of the sample pair (or pairs) are random variables with a corresponding moment

matrix. We have already shwon (in Section 6) that the moment matrix of one

sample pair takes the following form, when the only input is an external

source of white noise:[ + JO. - cosej) J sinOJ e 8'e

J sineJ e-i eJ I + J(l + cosej)

L J
The angles Oj and #j locate the source on the unit sphere, and we now assume

that this point lies on the characteristic trajectory of the system. This

source location is to be estimated, and we allow the system trajectory to be

completely general. The parameter J is the source-to-internal noise spectral

density ratio:

"' J- J-

2 N0

and its significance was discussed in Section 6. The samples have been

normalized so that M - 2 12 in the absence of any external source, but the

model for N is completely independent of the particular form of the filters

used in the system. In another application, one might wish to estimate the

azimuth of an external source with a signal waveform different from that for

which the receiver channels are matched. This signal could be in the same

band but utilize a different spreading code, for example. The response of the

matched filters to a random code from this source could be modeled so that the

samples are approximately Gaussian random variables, and a moment matrix of

the form H would result, with an appropriate value of J.
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Some of the oldest work on monopulse has used the random model, and we

show here that the ML estimator of source location is Identical to that

obtained with deterministic models, regardless of the nature of the

characteristic trajectory of the system.

With this random model, the pdf of the pair of samples, zi and z2 , isI
m-". 1-(ztM- z)

f(z) - e
-. w2Det(M)

where

z [ ] and zt - [1, :2

as before. Note that f(z) is the joint pdf of four real Gaussian variables.

We already know that

Det(M) 4(1 + 2J)

and that

1 - J(O + cosej) - J sinOj e J

2(l + 2J)

- J sinej eaJ 1 + J(i - cosej)

Substitution yields

logf(z) - - 1 [1 + J(l + cosej)Jlz,1 2 + (1 + J(O - cosej)J Z212
2(1 + 2J)

- 2J sinOj Re {zIz 2 e'#J41- log(l + 2J) - log(4w2 ).
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With our standard notation for the data ratio:

zi =tan (n/2)ei
., 2

we can use the expressions found in Section 2 for 1=112 . I2 12 and 3lz2
. with the result

log ~ 1 - Zfl2 +_IZ2 12 + J - J(cosO coon + sine sinlcos(#i. 10)11+ 1  Il + 2= J 1 I

- log(1 + 2J) - log(4w 2 ).

Again, only the distance, A , between the points (OJ , #j) and (n,*) on the

unit sphere enters this expression, and

l IZ112 + IZ212
logfz) -1 + 2J (+J -JcosA)

- log(1 + 2J) - log(4w2 ) .

The HL estimator of source location is the same as before, namely that

point on the system trajectory nearest the data point, (n, *). If is the
resulting minimum distance, then

1- IZ1l2 + 1z2 12

max log f(z)-. r :1 I :1 + 2Jsin2
,ej #JI + 2 J I

7 - log(I + 2J) - log(4w 2)

The estimate of J in then found by straightforward differentiation:
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J Y (11112 + I: 2 )COs92

or

ij N (IZ1I 2 + IZ212)coos 2 )

For an Ideal phase-comparlson system, we have 08 w/2 ,Aj and

A w/2 -in . Then

cog2 + cool I 1+sinn
cos(~. 2, 2

and

i = No{ ~~- (Jl2 + 1212 )(I + sin) - I

I

( )2
(11112+ IZ121

We recall that s, OW Z2 were normalized filter outputs, using a convenient

choice of filter gain. In terms of the quantitie

Hk a f 8 (t)zk(t)dt ,

which are the actual outputs of filters matched to S(t), we have

- (lul + al)2 I Is(t)2dtf -N
NJ2 0
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This analysis is easily generalized to the case of N sample pairs,

assumed independent of each other, and statistically identical to the single

pair already modeled. If the nth sample pair is denoted zj(n) and z2(n), as

before, then the logarithm of the Joint pdf of these samples is simply

log f I 2(1 iij { 1 + J (1 + cose)jlziI
2 + [1 + J(I - cosO )]1z212

- 2 Jsine Re {e - ij (z2,zi)

- Nlog (1 + 2J) - Nlog (4w2) .

In this expression we are using the vector space notation introduced in

Section 5. As in that section, we define the effective data point, (n, *),
by the equations

Q Sinn ei' - 2 (X2 ,z1)

Q cos - 1z21
2 - 1z11

2

with

2 2 1/2
Q {-1z2 12 - z11

2 ) + 41(z2.zl)I}

In terms of these quanties, we can write

log f = (1 + J)[IZ1i
2 + I21 - JcosA

2(1 + 2J)2

- Nlog(l + 2J) - Nlog(4w 2)

where A Is the distance from (0j, *j) to the point (n, *) on the unit

sphere.
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Again, the ML estimator of source location is the same as in the

deterministic case discussed before, where every sample pair had an unknown

amplitude and phase factor. If we define

P p Iz112 + lZ212

we can express the interference-level estimator in the form

N
- - (P + Q cost) - No

4N

where A is the minimum distance to the system trajectory attained by the ML

estimate of source location. For an ideal phase-comparison system, we again

have cosA - sinn , and then

N -No _L 1z1 2 + Z2 1
2 + 21(z ) - I

a direct generalization of the single-pair result.

Since we have modeled the external source wavefora as random noise, we

can interpret this source as an interferor instead of a desired signal, and

make usetof the above analysis to estimate its location. However, in this

application we may wish to remove the constraint that the source lies on the

system trajectory, since the source may be a composite of many separate

interferors. In Section 6 we showed that the resultant may be off the

characteristic in this case, and also that the multiple sources affect the

level of the apparent white noise components.

With these considerations in mind we postulate that the noise covarLance

has the more general form

1 + J(1 - cosO ) J sinOe J J
N-2k2

J sin8j -x J 1 + J(O + cosejJ
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where k is an additional parameter corresponding to an unknown white noise

component. This Is exactly the form used in Section 6 to represent the total

noise equivalent to a collection of external sources and white internal noise.

We assume that the data consists of N sample pairs and estimate (e. 4 j)

first, then J, and finally k. The intermediate results can be used if the

subsequent parameters are presumed known. When all the parameters are

unknown, M becomes an arbitrary positive-definite matrix, and our final result

reproduces the known ML estimator of M, namely the sample covariance matrix.

The addition of the factor k2 is a simple matter, and the logarithm of

the joint pdf becomes

: log f - (1 + J)[IZ 11
2 + 1z21

2 ] + J cosej[IZiE 2 - I212]lg f 2k2(1+2J) 
1

- 2 J sinej RejeiJ (z2 ,zl)J- N log[k 4 (l + 2J)J - N log(4w 2).

With the introduction of the data parameters (n, *), P and Q, as before, we

obtain

log f- 1I + J) P-JQCOSA}
2k2(1 + 2J)

- 9 logk4 (1 + 2J) - N log(4w2 )

The source location, (0., Yj), is now unconstrained, hence ye make the

estimates

which corresponds to 0 - . With this choice, we have
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log f - [P + J (P-Q)]
2k2(1 + 2J)

-N logk 4( + 2J) - N log(4r2 )

P + N log(I + 2J)- - -N logk4 N log(W2).

4k2(1 + 2J) 4k2

Differentiating with respect to (1 + 2J), we find that the estimator of

J satisfies the equation

I A P +Q

4Nk2

which leaves

log f -- N- N log -/ N logk2 - N log(W).
4N 4k2

If we stop at this point, i.e., treat k as known, the estimated covariance

matrix is rather complicated, with elements

P+Q +k 2 + "-k2 - 3212 F+Q k
4N Q 4H

;2 - +Q + k2 + ?32±- - k

4N Q 4N

2(P+k2)
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If, however, we continue, k is estimated by maximizing the expression

- Q - N logk2

.9 4 k 2

with the result

4N

When this estimate is substituted in M, the complicated quantity Q disappears

from the formulas and, substituting for P, we obtain the expected result

1z,1
2  (z2 ,z1)

(zlz 2) Iz21
2
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APPENDIX A

THE CORRESPONDENCE BETWEEN UNITARY TRANSFORMATION
IN THE SAMPLE SPACE AND ROTATIONS OF THE UNIT SPHERE

In Section 4 it was shown that a unitary matrix, V, viewed as a linear

transformation in a two-dimensional complex vector space, corresponds to a

rotation of the unit sphere. The mapping of a vector

z a Z2

to a point (8,t) on the sphere is expressed by the relation

zi
- tan (8/2) ez2

Any linear transformation matrix can be multiplied by a complex scalar

constant without affecting the transformation induced on the sphere, hence

eig V and V correspond to the same rotation. In this case the scalar factor

has magnitude unity to preserve the unitary character of the transformation.

The correspondence of transformations can be made unique by requiring that

Det(V) - 1, which we now assume.

To obtain the specific correspondence in question we consider, first,

infinitesimal transformations. We write

V-I 2 +i eH,

and find that

wt - 12 + i (t)

to first order in e. Thus H must be Hermitian, and also, since

Det (V) I + i e Tr (H)
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to first order, the trace of H must be zero. Since e is included as an

explicit factor, the elements of H can be normalized in some way, and it

proves convenient to use the following parametrization for V:

V 12 + (il/2)c S(Q)

::!i [ . -01l + U 2;
' :'where S(P.) E- [3 - i 2) U3

and

02+ P2 2 + P3

The numbers ul, P2 and V3 are real, and may be interpreted as the components
-of a unit vector M in a real, three-dimensional space. Obviously,

.. S

Tr(S)= 0

and also, we find that

2
S 12

The induced transformation on the sphere takes (0,#) into (6',.'),

where

V1 1tan (e/2)ei' + V1 2

tan (e6 /2)ei*
V2 1tan (e/2)e:" + V2 2
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We write e' e e + Ae,*' = * + A* and expand the left side to first-order
quantities. We also substitute for the components of V and develop the right

side of the above equation to first order in e. The result is

tan(e/2) + 1 sec2(e/2)Ae + i tan(e/2)Af + *..

" - tan(O/2) + icP3tan(e/2) - (ic/2)(p1 + tP2)e -i#

+ (ic/2)(pl - iP2 )tan2(8/2)e i +

or Ae = e (P2cos - plsinf)

A#- [ - ( 1cos + U2sinf)cot 0]

Now if we write

P3  c°Seo 1 + iP2 sine0o e

id..icifying the coordinate axes of the three-space in which E is defined with

those of the space in which the unit sphere is embedded, we have

AO - e sine sin(# -) , and

sinef - e [cosO sine - sine cose cos(#o -
0 ~ 00

These relations show that the point

e - e °  , to

is unchanged by the transformation, and that its antipode

o , , o
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is also invariant. Since V corresponds to a rotation, these points lie on its

axis, which is to say that y itself defines the axis of rotation of the

sphere. A plane, normal to g and passing through the center of the sphere

defines a great circle, which is left invariant by the rotation. At the

K. . longitude * =  + w , this circle reaches its highest latitude, being

tangent there to the circle 6 - - . At this vertex, we find
2

.4
'

Ae-0 , and

sinO At e sin (e + eo) , or

coseo A# --
0

which shows that the angle of rotation corresponding to V is e itself.

Now let V (Q , X) be the unitary matrix corresponding to a rotation

through a finite angle, X, in the positive sense, about the axis I . Then

V(jg, dx) 1 12 + (i/2)dx S(.) 0

The sequence of transformations described by the product V(!, dx ) V(g,X) then

corresponds to a rotation through X about M, followed by a rotation through

dX about the same axis. The resulting rotation, through X + dX about H

corresponds to V(, X + dX) , hence

V( X + dx)m V(, , dX) V(. ,X)

n V(p ,X) + (i/2)dX S(p!) V(p,X) .

Thus V ( ,X) satisfies the differential equation

d V(z ,X) -(1/2) S(M) V(H ,X)
-dX
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with V( ,0) 1 The solution is simply

v , " (i/2) s(M)

; ,I (A)n S,
nm n1-oT

But S2 n M 12 &d S2 n + I S, hence

V(Q, X) " cos(x/2) 12 + i sin (X/2 ) S(u)

or, in matrix form

cos(x 12 ) + i1i3 sin(x/2) (-iul + v2) sin(x/2)

. :, V(Y, X)

(-id2 - P2) siln(x/2) cos(x/2) - LU3 sin(x/2)

We can now use this correspondence to derive the transformation of the

data vector which will convert an ideal amplitude-comparison system into an

ideal phase-comparison one in the new coordinates. First, the sphere must be

rotated through 900 about the X axis, in order to carry the amplitude-

comparison trajectory (which lies in the XZ plane) into the equatorial plane.

In the process, the north pole, which corresponded to the data point (A/E)-O,

is moved to the intersection of the negative Y axis with the sphere. A second

rotation through 90, this time about the new Z axis, will preserve the

1:' trajectory while moving this reference point to the nominal reference, e-=/2,
,-o, for an ideal phase-comparison system. From the general form, a rotation

about the X axis corresponds to

cos(X/2) -i sino(2)7

Vi(X) I
--i sin(xl2) cos(xl2)
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and a Z-axis rotation is given by

V3(X) -

1 0e"i/2

S. The complete transformation we require is V3 (") VI(I!) ,or

2 2

r'2 /2-

The new coordinates are then

Zvi= I~~ (Z2 + iZI)

2

Vi2 w e-iw/4 I (Z2 - IZI)

The phase factor, e ,is completely harmless and can be dropped, which

completes the derivation since Z, wras the difference channel, Z2 the sum

* "~ channel sample in our amplitude-comparison formulation.

j~i4 
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